
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Intended for:

ActivitySim: Large-scale Agent-Based Activity Generation for

Infrastructure Simulation

Emmanuel Galli, CCS-3,

Stephan Eidenbenz, CCS-3,

Sue Mniszewski, CCS-3,

Christof Teuscher, Portland StateUniversity,

Leticia Cuellar, 0-6

Agent-Directed Simulation (ADS'09), San Diego, CA, March

22-27,2009

~Alamos
NATIONAL LABORATORY
--- EST. 1943 -- ­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

extrCLauthor-1
cuellar Leticia 217262 0-6

Page 1

1

ActivitySim: Large-scale Agent-Based Activity Generation for

Infrastructure Simulation

Emmanuel Galli, Stephan Eidenbenz, Sue Mniszewski, Christof Teuscher, Leticia Cuellar

{egalli, eidenben, smm, christof, leticia }@lanl.gov

30th October 2008

Abstract

We introduce ActivitySim, an activity simulator
for a population of millions of individual agents each
characterized by a set of demographic attributes that
is based on US census data. ActivitySim generates
daily schedules for each agent that consists of a se­
quence of activities, such as sleeping, shopping, work­
ing etc., each being scheduled at a geographic loca­
tion, such as businesses or private residences that is
appropriate for the activity type and for the personal
situation of the agent. ActivitySim has been devel­
oped as part of a larger effort to understand the inter­
dependencies among national infrastructure networks
and their demand profiles that emerge from the dif­
ferent activities of individuals in baseline scenarios as
well as emergency scenarios, such as hurricane evacu­
ations. We present the scalable software engineering
principles underlying ActivitySim, the socia-technical
modeling paradigms that drive the activity genera­
tion, and proof-of-principle results for a scenario in
th<=; Twin Cities, MN area of 2.6 M agents.

Introduction

The United States' Department of Homeland Secu­
rity aims to model, simulate, and analyze critical in­
frastructure and their interdependencies across mul­
tiple sectors such as electric power, telecommunica­
tions, water distribution, transportation, etc. Most
infrastructure sectors rely on an underlying network
that gets used by individual people and business en­
tities, or alternatively speaking: there is a demand
for the service that the network supplies. A non­
exhaustive list of examples inCludes the phone net­
work and the Internet that satisfy our the communi­
cation needs of the population, the road network that
meets the demand for mobility, the electric power grid
that satisfies our thirst for electricity. A full-fledged
simulation capability that allows to run what-if sce­
narios as part of a course-of-action analysis requires
the following, using the Internet as an illustrative ex­

ample:

1. 	 Accurate models of the network topology. For the
Internet, the IP-Ievel connectivity graph with ca­
pacity information satisfies this requirement.

2. 	Abstract models of the sector-specific processes
on the network. For the Internet, we need mod­
els for the protocols used on the Internet (http,
TCP, IP, email,Ethernet, 802.11, etc.).

3. 	 bynamic models of demand for the network ser­
vice where changes in demand are an emergent
property (as opposed to an input). For the In­
ternet, we need a tool that provides realistic sets
of Internet traffic sessions with origin, destina­
tion, and transmission size information. "'hile
some preliminary models for demand generation
in this sense exist (e.g., call models such as de­
scribed in [6]), this is a largely open research
area.

Demand on networks is largely generated by peo­
ple as part of their daily activities, such as driving to
work, using energy to cook or to heat the house , using
water and sewage systems, making phone calls, etc. 1

Thus, an accurate model for the daily activities of
individuals is a pre-requisite for our simulation capa­
bility. An agent-based approach is the only modeling
paradigm that allows us to generate demand shocks
as an emergent property of the simulation. To stick
to communication networks as an example, commu­
nication demand in emergency situations is different
from a baseline demand because (i) individuals have
evacuated in large numbers leading to a geographic
demand shift, (ii) logistics, organization (such as or­
ganizing a return) and emotional turmoil leads to in­
creased call volumes.

In this article, we describe our agent-based ap­
proach to activity modeling, called ActivitySim. Ac­

lThere are cases, where demand is harder to attribute di­
rectly to activities of individuals, such as the water use in nu ­
clear power plants. The point here is that a sizable fraction of
demand is generated and directly attributable by individuals
and individual households.

1

http:lanl.gov

tivity modeling is ActivitySim is a scalable simulation
tool. It relies on a synthetic, but statistically accu­
rate population of the US that was obtained using
disaggregation methods applied to US census data
[2].

The ActivitySim modeling paradigm is based on a
first-principle approach with respect to social mod­
eling. Our main focus in this report is the model
methodology, software implementation and scaling.
Thorough validation and testing is reserved for fu­
ture work.

ActivitySim is part of a family of simulation appli­
cations that follow the SimCore modeling paradigm.
SimCore [4] is a scalable open-source discrete event­
driven simulation engine. SimCore applications
searnlessly integrate with each other by exchanging
events. Other SimCore applications include sector­
specific simulators, such as MIITS-NetSim, and the
transportation simulator Fast Trans as well as indi­
vidual demand generation simulators such as Ses­
sionSim [3] for communication simulations. We give
two examples of how SimCore applications work to­
gether: (i) ActivitySim provides input to SessionSim,
which generates calls based on activities of agents.
The SessionSim output (ie Internet sessions) are sent
as events to MIlTS -NetSim [8] , which then routes
these sessions over the network topology. (ii) Activ­
ities from ActivitySim that lead to location changes
create a demand on the transportation network by
generating a trip between locations. This can be fed
as an event to FastTrans, which routes this trip over
the transportation network and feeds back to Activ­
itySim at what time the trip was completed.

ActivitySim agents are utility-driven: each activ­
ity gives a certain amount of utility to an agent de­
pending on how long the activity is being executed.
Agents also have priority functions for activity types,
where the priority of an activity intuitively increases
usually with the time that has passed since the activ­
ity was last executed. Activity types have constraints
that allow us to guide the timing of certain activi­
ties (such as work should happen during the business
hours). As optional modules, we (i) allow agents to
have personality types (guided by standard models
from social sciences) and (ii) let agents guide their
activity type selection by the needs that they want
to satisfy. We describe the ActivitySim modeling in
more detail in Section 3.

The main loop of an agent consists of planning and
re-planning its scheduled activities and evaluation the
resulting updated schedule with respect to the agent's
objective function . The objective function takes into
account predicted utility as well as priority and con­
straints violations. The schedule optimization step
can be performed through your favorite optimization

Figure 1: Overview of Software Architecture

method, such as the gradient method, local search,
simulated annealing, or taboo search. We describe
the optimization loop in Section 3

We have implemented and tested ActivitySim on
agent populations of up to 2.6M agents in a case for
Twin Cities, MN. We present scaling results in Sec­
tion 4.

2 The ActivitySim Architecture

ActivitySim is a C++ agent-based model that can
run on workstations as well as high performance com­
puting clusters. The supporting software architecture
consists of agent and discrete event simulation (DES)
frameworks, and libraries for graph processing, log­
ging, partitioning, asserts, random number genera­
tion, and message passing (see Figure 1). More de­
tails follow.

2.1 The SimCore DES Framework

SimCore is a library for building large-scale
distributed-memory, discrete event simulations
(DES)[4] using the discrete event engine from the
Parallel Real-time Immersive Modeling Environment
(PRIME)[I] or passing events, event queue mainte­
nance, and synchronization. It has previously been
used for packet-level and session-level telecommuni­
cations network simulations/8] and fast queue-based
transportation simulations, called Fast Trans. The
important concepts and classes within SimCore are
Entity, Service, Info, and Profile. An Entity is a
class that represents a simulation object such as a
person, location, or facility. A Service is a class that
is used to implement the behavior of an entity and
operates like an event handler. Services are attached
to Entities. An Info is a class that represents an
event that can be scheduled and supplies additional
data items and is processed by a Service. Infos are
passed between Entities (more typically between the
Services) to trigger an action. A Profile is a way of
providing runtime specification of default parameter
settings for different types of Entities, Services, and
Infos.

2

2.2 	 The SimCore Agent Layer
AgentCore

AgentCore is a "reactive agent" extension to Sim­
Core which adds classes for agent implementation.
It is based on the behavior-based layer (BBL) from
Muller's agent architecture[5]. The Agent class ex­
tends an Entity to include functionality (as meth­
ods) to perceive, think, and act and a Cognitor for
processing rules or patterns of behavior. A Cogni­
tor Service (known as the CognitorHandler) to the
agent-part of a simulation object processes Think
Infos (events) by calling the Agent's think method.
An implementation would typically call its Cognitor's
think method, but could certainly do more. Perceive
means to gather the current values of the simulation
world's facts or state variables. Think means to pro­
cess the agent's production-rules or patterns of be­
havior by means of a Cognitor to perform actions and
to cause other events to be scheduled. Act means to
execute the actions determined by thinking. In imple­
mentations, the think method typically encompasses
thinking and acting.

A pattern of behavior (POB) class has state, being
active or inactive, has an activation condition based
on the Agent's current facts, action code to execute
if it is activated, a success condition that determines
successful termination, and a failure condition that
determines that a failure has occurred. A POB can
have multiple execution steps. Each step can be in­
terrupted or interruptions can occur between steps.
Multiple POBs can be active at a time, but not all
will be executing.

The Cognitor implements the control cycle model
for thinking. An InterRap version is supplied (from
Muller's agent architecture), though others can be
added based on the beliefs, desires, and intentions
(BDI) model, etc. InterRap processes POBs in its
think method by managing completed POBs, check­
ing for newly triggered POBs, and executing active
POB steps.

Only Entities in a simulation that perform "intel­
ligent" behavior should be agents, such as a Person
entity changing and adapting their activity schedule.
Other Entities such as locations and households do
not need to be agents, though Agent-Entities and En­
tities can still interact through their Services.

2.3 	 ActivitySim

The ActivitySim agent-based simulation software
provides daily activity schedule generation and ex­
ecution for a synthetic population. It operates as
a standalone model for population analysis, as well
as coupled with other SimCore infrastructure mod­
els such as transportation and telecommunications to

study inter-dependency effects in baseline and emer­
gency scenarios. Persons, Locations, Households, and
Zones comprise the entity types used to represent
a model of a geographical area. A Person is also
an agent that reasons about daily activity schedules.
State (current activity and location), demographics,
activity location choices, and a current schedule are
all part of a Person. A Location tracks Persons as
they participate in its' activities. A Household is as­
sociated with a Location, has aggregated income, and
members (ex. family). A Zone is an aggregation of
Locations used when selecting where an activity will
take place.

The Persons, Locations, Households, and Zones
are provided as input at runtime along with a spec­
ification of a set of activity types including utility
and priority function parameters. An activity set
can be very specific (ex. sleep, personal care, lunch,
dinner, leisure) or more general (ex. home, work,
school, shopping, social recreation, daycare) . A Per­
son's schedule consists of a sequence of these activi­
ties with start time, activity, location, and duration.
A "Next Activity" POB triggered by a Think event
causes each Person to reevaluate their activity sched­
ule and add new activities as required (see Figure
2). A Person will "think again" during their next
activity. In addition to the utility-based activity se­
lection (described in Section 3) , other methodologies
can be added easily. Use of pre-generated schedules
and random activity generation are also supported.

Single activity execution is an independent process
from activity schedule generation. Each scheduled
activity is executed as a sequence of four Person­
level events and two Location-level events. A Per­
sonDepart event causes a Person to complete their
current activity and leave that Location (initiating
a RemoveFrom Location event). A Person Transport
event allows a Person travel time between locations.
A PersonArrive event places a person in the new ac­
tivity at the new location (initiating a MoveTo Lo­
cation event). Finally, a PersonDone event updates
a Person's state per their new activity and location.
'Vhen running on a parallel cluster, entities are dis­
tributed randomly across processors. The Person­
level events are executed on the processor where the
Person entity resides. Messaging is required between
processors when "moving to" or "removing from" an
activity at a Location.

Model output consists of configurable logging of
details of entity and service creation, along with sim­
ulation progression. Event files show the individual
event details for each Person and Location during ac­
tivity selection and execution. Output is selectable
for Person schedules and/ or counts of Persons per ac­
tivity for each Location at a single time or at regular

3

3

Acent control modules:

1;::1
Ol!tional,

I Personality type
" Human Needs

Figure 2: ActivitySim Inputs, Modules, and Think
Loop

Figure 3: Optimization Loop

intervals.

ActivitySim Modeling
Paradigms

We explain the ActivitySim modeling philosophy
along the main building blocks as illustrated in Fig­
ure 2. Recall that ActivitySim takes as input a pop­
ulation of agents and a set of locations. Each re­
sulting ActivitySim agent is characterized by a set of
demographic attributes, such as age, gender, social
status, personality type and home location. Activi­
tySim creates agents based on data sets derived from
US census data (see Section 4 for details). Input lo­
cations are physical locations, characterized through
latitude/longitude coordinates that represent either
a business location (obtained from standard business
data sources such as the Dunn&Bradstreet database)
or a private residence.

As part of the main loop of an agent, it re-plans its
scheduled activities during a Think-event that is exe­
cuted at the end of an activity or at any time during
an activity. In a Think-event, an agent optimizes its
planned future schedule and evaluates it with respect
to the its objective function. The objective function

4

is influenced by the notions of takes utility functions,
priority functions, constraints, needs function, and
personality types, which we will explain towards the
end of this section. Figure 3 illustrates the opti­
mization loop that forms the Think-event in more
detail. The schedule optimization step can be per­
formed through your favorite optimization method,
such as the gradient method, local search, simulated
annealing, or taboo search.

The utility-driven activity selection model uses the
modules of utility, priority and constraints with ad­
ditional (optional) modules of needs and personal­
ity types that impact the schedule optimization loop
shown in Figure 3. The notion of utility functions for
activity selection builds on earlier work [7]. Gener­
ally an individual tries to optimize just a little set of
activities while he/she has just a general idea of what
he will do in the next days. So agents try to improve
their current schedules, deciding often at last minute
which activities they will perform. To grasp this con­
cept intuitively, consider that we have a generic idea
of what we will do in the next days (we know that
we will go to sleep at the end of the day) but we can
not say with great precision at what time we will per­
form it. Moreover an individual generally can sched­
ule some particular activities that will happen in the
far future (vacation, checkup, meeting) but will op­
timize every particular activity only when she/he is
really close to the event. Inspired by these concepts,
we have created a general model where given an ini­
tial schedule, every agent tries to optimize its sched­
ule according to his personal characteristics. Starting
with a basic set of already scheduled activities, the
agent searches for a valid better schedule inside a
limited future time window, which we call the sliding
window. The new schedule is then evaluated by an
objective function and if the new schedule is better
then previous, the process is iterated. So the general
algorithm can be described as follows:

1. 	 Starting Schedule: A starting schedule is selected
or it is the scheduled calculated in a previous
step;

2. 	 Local Optimization: Schedule is modified within
the sliding window according to local optimiza­
tion rules;

3. 	 Validity Check: All activities that violate con­
straints are deleted from schedule;

4. 	 Schedule Evaluation: Objective function evalu­
ates the total schedule. If the objective function
value is greater than the previous schedule, "it
becomes the new starting schedule. If the num­
ber of optimization steps has not yet reached a
maximum threshold, the algorithm loops back to
step 2;

5. 	 Append: If no modifications to the original
schedules have been accepted, a random activ­
ity is appended at the end of scheduled queue at
a random future point in time.

The optimization algorithm is an algorithm which
takes as input the scheduled activies inside the slid­
ing window, an utility function, a priority function,
a location selection function and moreover can con­
sider the needs and personality types. Such algorithm
can use any optimization scheme (neural networks,
genetic algorithm, tabu search, simulated annealing,
etc.) to come up with a new candidate schedule. For
example, our current local optimization uses prior­
ity function to order unscheduled activities while the
utility function is used to evaluate the duration; needs
and personality type influence the sorting of unsched­
uled activities. The output of local optimization (a
new schedule) is evaluated by the objective function.
The idea behind the objective function is that we
should penalize schedules that do not consider the
value of utility, priority, and/or location. The 'mod­
ules that impact the objective function evaluation are
described in more detail in the following subsections.

3.1 Utility Functions

The utility that an agent gains from performing an
activity can ideally be. explained in monetary terms.
In our case the level of satisfaction cannot be mapped
to a uni.t, but what matters are relative values of sat­
isfaction. Every activity type is associated with a
utility function. The utility of performing an activity
is typically a function of the duration for which the
activity is performed. There usually are lower and
upper bounds for the utility that an agent can gain
from performing an activity: consider sleep as an ex­
ample, where even 5 minutes of sleep can have high
utility and maximum utility is reached after about
8 hours for most people; sleeping 15 hours usually
comes with less utility than sleeping only 8 hours.
Utility functions have the following characteristics:

i) 	 U'(t) ~ 0

ii) 	 U : 'R ----> [Umin ' Umaxl with U max maxi­
mum marginal utility and with U min minimum
marginal utility;

iii) Let y E 'R: U"(y) = 0 => for every x E 'R: x ~ y
U"(x) ~ 0

Figure 4 shows the utility functions as a function
of duration that we have chosen for some of our test
runs. Our utility functions have relatively steep tran­
sitions from a low level to a maximum level of util­
ity. We have consulted with social scientists and
economists to obtain these utility functions, but they

Utility

_ -SiNo-"""caN-­-",""" -. ­
(-------------­
I ,

I

------------~------------
I
I

:
I
I
I
I

Figure 4: Example Utility Functions

should be considered a preliminary set. The func­
tional form of the utility (adopted from [7]) is defined
as follows for an activity type a:

umax umin
U	 = umin + a - a a a (1 + exp[-,B (va - Q a)])l'u

where

v 	is the duration (v ~ 0)

umax is the upper asymptote of the curve (umax >
0)

u min is the lower asymptote of the curve (u m in ~ 0)

Q 	 is the parameter of x-translation

,B 	 is the parameter of the slope

"I 	is the parameter of the inflection point.

3.2 Constraints

Constraints are non-negotiable conditions that a
schedule must satisfy in order to be considered valid.
Activities can be different from person to person and
can be biased by age, personalities, marital status,
family degree, employed status and so on. Thus, ev­
ery agent chooses its activities from a set of activ­
ity types that is specifically tuned to the individual
agent. ActivitySim imposes constraints on every ac­
tivity type that must be obeyed during the activ­
ity selection. These constrains are minimum dura­
tion, maximum duration, earliest start time, latest
start time, earliest end time and latest end time.
Every location has a set of activity types that can
be performed at that location (such as work, if it
is a business location; or shopping, if it is a retail
location). Thus similar constraints are imposed on
a per-location-per-activity type basis regarding pos­
sible start and end times of activities. These con­
straints are akin to opening hours.

5

I

3.3

']

..

...
f...,

Ptiortty Function

'......
-~-

Figure 5: Example Priority Functions

Priority functions

A priority function is a function of time and repre­
sents the priority of an activity in a particular instant ·
in time. This concept is particularly important dur­
ing an emergency scenario where even though, for ex­
ample, a person needs to eat, all evacuation activities
must precede the activity eating. The priority func­
tion characteristics can be summarized as follows:

i) is function of time;

ii) is monotonically increasing;

iii) limt~oo P(t) = 1;

iv) limt~o P(t) = O.

The priority function is set to zero as soon as an ac­
tivity is performed. If an activity is selected always
at the same time, the priority function is also a pe­
riodic function. Performing an activity type usually
becomes more urgent with the time that has passed
since the last execution of the activity. Thus, the
time axis defined in these function represents the time
since last execution of the activity type.

Figure 5 illustrates the sigmoid priority functions
we have used in some our test runs. More formally,
the priority function is similar to the previous utility
function . If an activies has been already scheduled
th'en the priority value is equal to zero. Let a be an
unscheduled activity we have:

where:

To. = startTimeo. +durationo. is the last time that

activity a was performed

to. is the current time

Q, (3, "I have the same meaning presented in the util­
ity function.

3.4 Needs function

An individual is driven by his needs. A need is a
dynamic characteristic of a person that decrease in
the space of one or more days and it is directly influ­
enced by some activities. So a person performs some
activities to satisfy his needs. At the same time an
activities can also influence negatively other needs.
For example, the activity ''work'' influences negatively
needs as "energy". A need is described by the inverse
of the presented priority function . Performing spe­
cific activities will bring the need value to his opti­
mum while others will decrease it to O.

3.5 Location selection function

The location function represents the attractiveness
of a wne. The function decrease with distance,
time spent to reach it and/or other cost parameters
(money, energy, ecc..) and increase with the num­
ber of activities that is possible to perform in such
location as well as with personal preferences.

In our test runs the location function is simply a
function of distance and decrease with it. Let a be
the selected activity and i, j the current and next
location respectively, we have:

3.6 Objective function

The objective function is a linear function that eval­
uates the new schedule. Such function takes as input
all scheduled activities, the utility, priority, location
function used also in the local optimization. Defining
S as the set of scheduled activities

S = {SO, .. , SN} with N > 0

we can define the objective function as follows:

with U(Si), P(Si) and L(Si) the utility, priority and
location function value of scheduled activity Si.

The objective function evaluates a proposed sched­
ule at the beginning of each new activity by giving
positive points for achieved utility, negative points for
incurred non-zero priority values at the beginning of
each scheduled activity for every activity type, and by
penalizing long travel times to new locations. Find­
ing good schedules is obviously quite a challenge that
calls for smart optimization schemes.

6

3.7 Optimization Algorithm

The optimization loop can either try to evaluate a
large number of new schedules thru many iterations
or it can attempt to invest cycles in finding a rela­
tively small number of good new schedules by taking
into account the utility, priority, and constraint mod­
ules. It is open which strategy is better and we are
currently experimenting with light-weight simulated
annealing approaches with very cheap neighbor func­
tions. However, we have used the local optimization
algorithm described below for our test runs, which in­
vests many cycles into finding a few good new sched­
ules.

The currently implemented algorithm uses set op­
erators to modify the schedule. These operators are:
insert, substitution and adjustment. The insert op­
erator puts an unscheduled activities, respecting its
constraints, between two already scheduled activities
or between the last activities and the end of sliding
window. The substitution tries to substitute a ran­
dom scheduled activity with an unscheduled one. In
such case is used the same start time and duration of
substituted activity. The adjustment sets the dura­
tion close to its optimum value that is:

1 1
v = a - -lg(---;====::=== - 1) with c > 0

{3 ~ /1- c
V Umax - Umin

In our experiments we have used c = 10% of Umax'

The adjustement is always first applied to the activity
that has the highest utility value and then to the
other one. The goal of the algorithm is to fill the
sliding window with the highest priority activities.
Once the activity type has been selected, the location
with highest location function value will be selected.
The algorithm tries to fill the sliding window using
insert and substitution operators. For every operator,
the total utility function is computed as:
let A = ai, ..aN scheduled activities inside the sliding
window then:

Utot = 2:~1 Ui

We select the operator with the highest total utility.
Since the insert and substitution operators do not
consider optimum value for duration of an activity,
the adjustment operator is applied to all scheduled
activities.

4 Large example results

We used ActivitySim with the utility-driven schedul­
ing to model daily activities in Twin Cities, MN.
The synthetic population was constructed to statis­
tically match the 2000 population demographics at

the census block group level. The synthetic pop­
ulation consists of 2,592,906 individuals (as agents)
living in about one million households, with an addi­
tional 487,725 locations representing actual schools,
businesses, shops, or restaurants. A schedule of ac­
tivitieS to undertake each day is created, each with
a start and stop time, activity type, and location.
There are sixteen types of activities: home, work,
shopping, visiting, social recreation, other, passen­
ger server, school, college, dining out, service ap­
pointments, medical appointments, daycare, elemen­
tary school, junior high school, and high school.

Information about the time, duration, and location
of activities was obtained from the National Trans­
portation Survey(2]. Each person agent was given an
assigned set of locations based on the surveys. Loca­
tions were not provided for all activities, but only for
a subset that were relevant to an agent's demograph­
ics and associated survey. Only one location was pro­
vided for home, work, passenger server, school, col-.
lege, daycare, elementary school, junior high school,
and high school. Four or more were provided for the
remaining activity types. The home activity was al­
lowed to start at any hour during the day and for
any length of time. Work was limited to 4-10 hours
at a time at any time during the day, while junior
high school as limited to 4-6 hours at a time start­
ing between 8 AM and 10 AM, ending between 11
AM and 4 PM. Two example schedules are shown in
Figure 6. The first shows a child's schedule going to
junior high school every morning. The second shows
an adult's schedule who goes to work, spends time
at home, has medical appointments, goes shopping,
and participates in social recreation. Though multi­
ple activities of the same type appear in sequence (ex.
home), these initial results on a larger population are
promising. More tuning of the utility and priority
parameters is required to reduce the gaps.

The Twin Cities synthetic population was run on
the LANL Institutional Computing parallel Coyote
cluster (2,580 x AMD opteron nodes @ 2.6 GHz with
2 processors per node, Voltaire InfiniBand intercon­
nect, 10.2 TeraBytes RAM) distributed across 8, 16,
32, 64, and 128 processors. Each was run for 10 sim­
ulated days. In all cases reading the input data took
about 1.5 minutes. The average runtime per simu­
lated day is shown in Figure 7. We see that using 32
processors is sufficient for running this problem size,
with little additional gains for more.

5 Conclusion

The work presented in this paper is a large step to­
wards developing robust activity generation and ex­
ecution for synthetic populations as part of infras­

7

IM¥ Stilrt.Dm.f: L.oWiml AI:Uldty DucatklD
0 8:00:08 600542 JrHlghSchool 6:14:06
0 22:47:22 267425 Home 0:47:00
1 6:58:30 600542 JrHlghSchool 4:28:04
1 19:26:43 267425 Home 2:52:02
2 7:42:55 600542 JrHighSchool 5:20:05
2 17:27:05 267425 Home 3:10:03
2 23:06:11 267425 Home 0:52:00

IM¥ Start lim!: ~ AI:Uldty DucatklD
0 8:09:08 435630 Medical 3:12:03
0 12:22:12 435630 Medical 3:14:03
0 18:34:18 264485 Home 3:22:03
0 23:05:23 313655 Work 7:02:07
1 7:17:31 264485 Home 4:51:04
1 14:06:38 459512 Medical 1:21:01
1 16:45:40 264485 Home 1:29:01
1 20:43:44 470567 Social 0:30:00
1 21 :24:45 264485 Home 1:05:01
1 23:49 :47 313655 Work 9:38 :09
2 10:11:58 264485 Home 1:11:01
2 11:57:59 313655 Work 4:47:04
2 18:31:06 264485 Home 2:04:02
2 21:44:09 264485 Home 2:04:02
3 13:54:25 313655 Work 6 :05:06
3 21:58 :33 264485 Home 1:36:01
3 23:56:35 313655 Work 8:22:08
4 10:10:46 406496 Retail 2:08 :02
4 12:59:48 330051 Social 2:19:02
4 15:52:51 264485 Home 5:24:05

Figure 6: Example of produced schedule

ActlvitySim Utility Scheduling for Twin Cities
(~2.6M Agents)

60

;: so .."
)40
.!I

.
~

!30
!.
c

20

~
j: 10

0
4 8

N <p<ocessors = 2")

.1

Figure 7: Running time per simulated day

tructure simulations for baseline and emergency sce­
narios. Thnable utility functions, priority functions ,
needs functions, and constraints allow for variabil­
ity in each agent 's daily activities adding a touch of
realism. Future plans include the addition of other
schedule generation and optimization strategies (such
as the gradient method, local search, simulated an­
nealing, or taboo search), scaling to larger popula­
tions (ex. southern California, the entire US), and
analysis metrics for schedule evaluation.

8

References

[1) 	 PRIME. Parallel Real-time Immer­
sive Modeling Environment (PRIME).

http://lynx.cis.fiu.edu:8000/ twiki/ bin/ view / Public/

PRIMEProject.

[2) 	 US Department of Transportation (DOT), 2003. Bu­
reau of Transportation Statistics. NHTS 2001 High­
lights report BTS03-05.

[3) 	 L. Kroc, S. Eidenbenz, and V. Ramaswamy. Session­
sim. Technical Report 07-0592, Los Alamos National
Laboratory, 2007. Unclassified Report.

[4) 	 L. Kroc, S. Eidenbenz, and V. Ramaswamy. Simcore.
Technical Report 07-0590, Los Alamos National Lab­
oratory, 2007. Unclassified Report.

[5) 	 P. Muller. The Design of Intelligent Agents: A Lay­
ered Approach. Springer, 1996.

[6) 	 V. Ramaswamy, S. Thulasidasan, P. Romero, S. Ei­
denbenz, and L. Cuellar. Simulating the national tele­
phone network: A socia-technical approach to assess­
ing infrastructure criticality. Military Communica­
tions Conference, 2007. MIL COM 2007. IEEE, pages
1- 7, Oct. 2007.

[7) 	 Vhang-Hyeon Joh, Theo A. Arentze and Harry J .P.
Timmermans. Understanding activity scheduling and
rescheduling behaviour: Theory and numerical illus­
tration. GeoJournal, 53(4) :359- 371 , Apr. 2001.

[8) 	 R. Waupotitsch , S. Eidenbenz, P. Smith, and
L. Kroc. Multi-scale integrated information an
telecommunications system (mUts): First results
from a large-scale end-ta-end network simulator. In
Proceedings of the Winter Simulation Conference,
http://portal .acm.org/ citation.cfm?id= 1218112.1218500,
2006.

http://portal.acm.org/citation.cfm?id
http://lynx.cis.fiu.edu:8000

